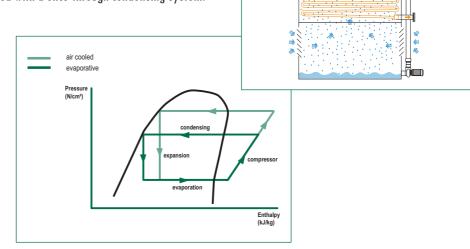
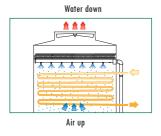


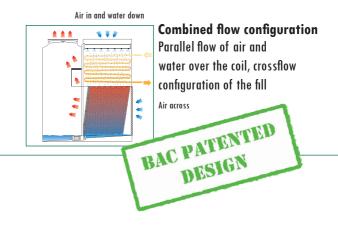
www.BaltimoreAircoil.co.za	CXVE	CXV-D	нхс	ECI	VCL	VXC
Principle of operation	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40p	AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			
Capacity	440 - 2765 kW	2750 - 4025 kW	545 - 1895 kW	129 - 2929 kW	180 - 1380 kW	60 - 6920 kW
Configuration	combined flow	combined flow	combined flow	counterflow	counterflow	counterflow
Air entry	axial fan induced draft	axial fan induced draft	axial fan induced draft	axial fan induced draft	centrigufal fan forced draft	centrigufal fan forced draft
Low sound	(1)) c	(1)) c	(1)) c	(()) F	I(1)) A	((1)) A
Energy efficiency	(3) A	(\$) A	(3) A	(\$) A	(3) F	F F
Easy maintenance	A	X A	※ B	X D	% •	X D
Operational safety (hygiene)	A A	A A	В	D D	E	E
Water saving	E	E	c c	D D	D D	D D


Refrigerant condensers

Principle of operation


Evaporative condensers discharge refrigerant and air-conditioning heat, and consume minimal energy and water. They combine a cooling tower and a refrigerant condenser in a single unit. A small portion of the water is evaporated, removing the heat from the refrigerant and condensing it inside the coil. This saves up to 95% of the water compared with a once-through condensing system.

Benefits


- Initial cost savings: cooling tower, condenser surface, water pump and piping in a single equipment unit
- Low system operating costs: low condensing temperatures for a more compact compressor using less power
- Low refrigerant charge, costs and environmental impact minimized
- Space-saving: up to 50 % area savings compared to comparable air-cooled installations

Configurations

Counterflow configuration

Pressurized spray system

Fan systems

Centrifugal fan

- can overcome external static pressure, suitable for indoor installations
- inherently quiet

Forced draft

- rotating air handling components are located on the air inlet face at the base of the tower
- easy access for maintenance
- located in dry entering air stream

Axial fan

low energy usage

Induced draft

- rotating air handling components are mounted in the top deck of the unit
- minimal impact of fan noise
- maximum protection from fan icing
- located in the corrosive saturated discharge air stream

